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Abstract. We consider synaptic neural networks which minimise the output error of the 
stored patterns when the input patterns are ensembles of their noisy versions with overlap 
m, with the clean patterns. When m, is infinitesimally less than 1, the network automatically 
attains maximal stability, confirming the usefulness of training noises in enhancing memory 
associativity. When m, drops below 1, the field distribution has two bands for large m,, 
and one continuous band for small m, . Errorless retrieval is impossible for training noises 
of the order No.  With the increase in training noise, the retrieval overlap deteriorates, 
although memory associativity does increase for sufficiently low storage. 

Memory associativity (or content addressability) is a very important feature in attractor 
neural networks. This means that when a pattern (6 = *l; j = 1 . . . N} is stored in the 
network, the presentation of a noisy version { Sj}  of the pattern will be attracted, through 
the dynamics of the network, to a final configuration identical to, or at least highly 
correlated with, the stored pattern. 

In the synaptic neural network, information about the stored patterns is encoded 
in the synapses Jii. In the standard version of the network dynamics, the local field 
at a node i due to other nodes is evaluated at the tth time step, and the state at the 
next time step is updated according to the sign of the field, i.e. 

S i ( t+ l )=sgn(T  J v S j ( t ) ) .  

To monitor the associative retrieval of a stored pattern {tj}, it is useful to consider the 
overlap m ( t )  at each step, given by 

1 
N i  

M ( t ) = - sisi ( t ). 

If m ( t )  becomes identical to or close to 1, the pattern is successfully retrieved. 
Two ways have been proposed to encode the synaptic matrix Jv so that the network 

enhances its memory associativity. The first method [l-41 is to modify the synaptic 
matrix stepwise according to the perceptron learning rule, whenever the (normalised) 
local fields of the stored patterns at a node i do not satisfy the stability requirement 

where Xj J i  = c, c being the connectivity of a node. At the storage ratio a = p / c ,  the 

t Present address: Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK. 
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maximal stability K ( a )  is given by [ l ]  

The second method, called ‘training with noise’ [SI, is D update stepwise the 
synaptic matrix, again according to the perceptron learning rule, but with the input 
configuration {R;} slightly distorted by random noise. This means that 

( 5 )  
where we call m, the training overlap. Here the rationale is that if the network is 
adapted to associating noisy inputs of a stored pattern with its correct output during 
training, then it is expected to possess the same capability during retrieval. Numerical 
simulations have shown the success of this scheme, but no theoretical analyses have 
been provided. 

In this letter we consider networks which minimise the averaged output error of 
the stored patterns (57) when the input patterns { R r }  are ensembles of their noisy 
versions according to ( 5 ) .  We define the cost function to be minus the output overlap. 
In reminiscence of Gardner and Denida [ 6 ] ,  we then proceed to find the corresponding 
free energy defined in the space of weights .Ig, and quench-averaged over a random 
distribution of p patterns. The zero temperature limit of this free energy yields the 
ground-state (optimal) cost function. 

Optimising the network retrieval of ensembles of noisy input patterns is equivalent 
to presenting similarly noisy examples to the network during training and finding the 
synaptic matrix that gives the least averaged output error. The previously proposed 
‘training with noise’ algorithm can be considered as a stepwise attempt to reduce the 
output errors to a level which makes associative retrieval possible, but is by no means 
optimal. Our study of networks that minimise the output error at the input overlap 
m, will therefore provide an upper bound to the network retrieval quality of the ‘training 
with noise’ procedure, and will reveal qualitative effects of training noises. 

Obviously, the case m, = 1 corresponds to the noiseless case of Gardner and Demda 
[6]  with zero stability. As we shall see, however, the network automatically attains 
maximal stability given by (4) when 1 - m, is infinitesimally small. This discontinuity 
in network behaviour demonstrates the usefulness of training noises in enhancing the 
memory associativity of the system. Further increase in training noise enlarges the 
basins of attraction for sufficiently low storage, but causes disruption of the stored 
pattern. When m, < 1 -0(( ln  In N ) - ’ ) ,  errorless retrieval becomes impossible. 

Let us start by minimising the output error (or equivalently, maximising the output 
overlap) in one time step when the input overlap is m,. Since the optimisation on any 
one node is independent of the others, it is sufficient to consider the cost function 
defined on a single node i, which is 

P ( R ~ )  = & I  + m,)S(R” - 67) +$(I  - mt)8(R” + 67) 

where R; represents the c-component input state of the noisy patterns in ( 5 ) .  (Sub- 
scripts i are hereafter implicit.) Performing the average over RY explicitly, this cost 
function is reduced to C = -Z, g(A”), where A” = l/&.f”J. 5” is the (normalised) 
local field of the (clean) p th  pattern, and 
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The corresponding free energy is now obtained by an 'annealed' average over the 
space of the synaptic weights 4, treating the p patterns as 'quenched' variables. The 
partition function at a temperature T = P-' is then given by 

The pattern-averaged free energy is obtained by the replica formula 

(9) 
1 

h-0 n ((ln 2)) = lim - (((2")) - 1) 

where (( )) represents averaging over the p input patterns. Using the techniques of 
Gardner and Derrida [6], we can show that, in the replica symmetric ansatz, the optimal 
output overlap f ( m , )  (when the input overlap is m,) is given by 

z 
f( m,) = lim - ((ln 2)) 

f3-m Pac 

Evaluating the maximum of 8 explicitly, we obtain 

where 6 and t are related by 

X L  

4 
t ( e )  = e -- g y q  

and the extrema1 condition for x becomes 

= I e-'2/2 (e( t )  - c ) ~ .  

A word of caution has to be expressed about the inverse function e ( t )  of t ( 0 ) .  For 
sufficiently large m, (and consequently x), 8 is a multivalued function of t in a range 
of the argument, and care must be taken to choose the correct 8. Because of the 
maximisation requirement in (lo), there exists a discontinuity of 8 as a function of r 
at to = t (  e,) = t (  00, where 

This is equivalent to the Maxwell's construction (see figure 1) 

je:der(e)=ro(e,-e,) 

used in the theory of first-order thermodynamic phase transitions. Thus, by discarding 
the range of 8 between 8, and e,, the function e ( t )  is now single valued. 
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Figure 1. The Maxwell construction for e ( f ) .  The points (e), to) and (e(, t o )  are chosen 
such that the areas A, and A, are equal. The continuous full curve r ( 0 )  is given by equation 
(12), but the physical curve for O ( t )  has the discontinuity indicated. Here a = 1.5 and 
m, = 0.9. 

We are also interested in the network retrieval. For an arbitrary input overlap m, 
the output overlap f ( m )  is given by [7-91 

where p ( A )  is the pattern field distribution 

In our noise-optimised network, this becomes 

yielding 

Note that when m = m,, the output overlap is indeed the optimised output overlap 
given in (11). (Hereafter we shall drop the distinction between f and f for symbolic 
unity.) 

Because of the discontinuity in 0, there exist two separate bands in the pattern field 
distribution p(A)  for sufficiently large m,. 

Having derived these basic results, let us consider various cases. First consider 
m, = 1, when g ( 8 )  in (10) becomes sgn 8. This yields a storage capacity for errorless 
output at a, = 2, where the pattern field distribution is equal to a Gaussian of unit 
width truncated at A=O, plus a delta function of weight 1/2 at A=O, agreeing with 
the results of Gardner and Derrida [6]. 



Letter to the Editor L179 

Next, consider m, slightly less than 1.  In this regime, x>>1, and we can assume 
that -lo = -e( >> 1.  The Maxwell construction requires that 8, - 8( = x, and this in turn 
requires 8, = &/a, where el is related to x via 

Noting that 

then e l ,  and hence x, can be derived from the extrema] condition 

identifying 8,  to be K ( a ) ,  by virtue of (4). The field distribution p ( A )  is then a 
Gaussian of width 1 truncated at A =  K ,  plus a delta function at A =  K ,  identical to 
the field distribution at maximal stability [7-91. Since it has been proposed [ 5 ]  that 
if a solution exists for a noisy training ensemble the 'training with noise' algorithm 
will converge to it, this implies that by introducing an infinitesimally small training 
noise, the perceptron learning algorithm automatically results in a network with 
maximal stability after sufficiently long training, although the stability requirement 
need not be imposed at each training step. 

The discontinuity of network behaviour from m, = 1 to m, = 1 -  can be traced to a 
discontinuity of the training ensemble in the two cases. In the m, = 1 training ensemble, 
all the examples of a pattern are identical, and the network is merely adapted to the 
retrieval of clean patterns, resulting in a memory associativity far from maximal. On 
the other hand, the m, = 1- ensemble contains a full range of distinct noisy example 
patterns, each of whose weights decreases with its Hamming distance from the clean 
patterns. The network is therefore adapted to the retrieval of noisy patterns, resulting 
in the maximal stability. 

When m, falls further below 1, the field distribution p(A) starts to develop two 
bands. The upper band is bounded below by e, ,  and the delta function peak obtained 
at A = K for m, = 1- degenerates into a broader, but still sharp, peak. The lower band 
is bounded above by and its weight increases with training noise. Here 

( 2 3 )  
where x is given by (20) with e , = K ( a ) ,  and in the second term e ( t ) - K ( a )  for 
t - O( 1). The optimised output overlap f( m,) is given by 

implying that errorless retrieval at the training overlap m, is possible only up to a 
training noise d, = $( 1 - m,) = K 2 (  a ) / 8  In N. 

If, however, we are interested in errorless retrieval for clean input, the restriction 
on training noise is less stringent. The storage of clean patterns (i.e. input overlap 
being 1 )  is determined by f( l),  which we shall call the storage overlap. Their outputs 
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are errorless provided 

f( 1) = erf(’ -:’a) - 1 - O( N - I )  

or d, = K 2 ( a ) / 8  In In N. This shows that any training noise of the order N o  results in 
the disruption of the stored patterns, revealing a disadvantage of the ‘training with 
noise’ scheme. Because of the double logarithmic dependence on N this restriction, 
however, is not too stringent. 

A further reduction in m, results in a further deterioration of both the optimised 
overlap f ( m , )  and the storage overlap f ( l ) ,  a narrowing of the band gap and a 
smoothening of the peak in the field distribution. To study the effects on the final 
overlap and the basins of attraction, we restrict our discussion to the case of large but 
dilute connectivity, namely 1 << c << In N, when the one-step relation between input and 
output overlaps can be extended to successive retrieval steps, since time correlations 
of the configurations may be neglected [lo]. Starting from an initial configuration 
close to a stored pattern, the final overlap after iteration is then given by a stable fixed 
point m* = f ( m * ) ,  and the basin boundary of attraction is defined by an unstable fixed 
point ma. We find that training noise indeed enlarges the basin of attraction (i.e. 
reduces me) for sufficiently low storage, although the fixed point overlap m* inevitably 
deteriorates because of training noise disruption. (For high storage levels, training 
noise may shrink the basin of attraction near the first-order-retrieval-non-retrieval 
transition. The reader is referred to [12]  for details.) 

At m, = m, where t ’ (  8,) = t”( e,) = 0, the two bands merge. In the extremely noisy 
limit m,+0,  the field distribution p ( A )  becomes a Gaussian of width 1, and mean 
l/&. This means that the system becomes a Hebb-rule network with J V =  
Z, (Y(y/&c. Our recent studies [ 111 showed that the Hebb-rule net minimises the 
output error among all Boolean networks in the high training noise limit. Since synaptic 
networks can be emulated by Boolean networks, the Hebb-rule must also minimise 
the output error among all synaptic networks in that limit, which is indeed the present 
result. 

Figure 2 shows the training noise dependence of the optimised overlap f ( m , ) ,  the 
storage overlap f ( 1 ) ,  the fixed point overlap m* = f ( m * )  and the boundary overlap 
mB.  Figure 3 shows the training noise dependence of the field distribution p ( A )  from 
the maximally stable limit (m, = 1-)  to the Hebb-rule limit (m, + 0). 

We now have a clearer picture of the differences between the maximally stable 
perceptron network and the Hebb-rule network. Since the maximally stable perceptron 
is associated with low training noise, it has a higher storage capacity, less retrieval 
error, but weaker memory associativity (i.e. smaller basins of attraction). On the other 
hand, the Hebb-rule net is associated with high training noise, giving it lower storage 
capacity, larger retrieval error, but stronger memory associativity. In fact, the basins 
of attraction are so large that the transition from retrieval to non-retrieval is second 
order on increasing a. 

Finally, we discuss the noise-optimal networks in terms of the universality classes 
of Abbott and Kepler [13]. Identifying the Boltzmann factor e-B*(“’) as their a priori 
weight, we see that for m, below m,, where 1 - (x2/4)g”> 0 holds, we have the one-band 
field distribution belonging to the ‘singular’ universality class of Abbott and Kepler. 
In particular, as m,+ 0, g( 8 )  - 8 gives their result for a Hebb matrix. On the other 
hand, for m, above m,, the two-band field distribution belongs to a new universality 
class. As m,+ 1- ,  however, this class approaches the Gardner case. 
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Figure 2. The dependence on the training noise d,=i( l  -m,) of the optimised overlap 
f(m,),  storage overlap f ( l ) ,  fixed point overlap m* and boundary overlap m, for a =OS. 
Here m, = 0 for d, > 0.1 1. 
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Figure 3. The field distribution p(A) for different training overlaps from the maximally 
stable limit to the Hebb-rule limit, at a = 1.5. Starting from the bottom, the curves 
correspond to m, = 1-, 0.9, m,, 0.4 and O+. Here m, = 0.7798. The vertical scale has units 
such that the separation between horizontal axes is 0.6, but the zero is reset for each curve 
in the sequence; the asymptotic values of p ( A )  at large A are zero. The curve for m, = 1- 
has a delta function peak at K ( a )  =0.1861. 
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The idea of using noisy example patterns for training has also been applied recently 
to the feedforward network [ 14-16]. 

We thank C Campbell, D Amit and M Evans for meaningful discussions. This work 
was supported partially by SERC. 
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